The Global Outlook for Biodegradable Packaging

Key trends and developments driving the global biodegradable packaging market
Ian Barnett

Ian Barnett is a freelance analyst in the food and drinks sector with over 25 years experience in market research and consultancy. He has worked for a number of leading research houses including Leatherhead Food International, ERC Statistics International, the Economist Intelligence Unit and Market Assessment. Across the food and drinks sector he has worked extensively in technology, new product development as well as commercial and business strategies.

Disclaimer

Copyright © 2011 Business Insights Ltd

This report is published by Business Insights (the Publisher). This report contains information from reputable sources and although reasonable efforts have been made to publish accurate information, you assume sole responsibility for the selection, suitability and use of this report and acknowledge that the Publisher makes no warranties (either express or implied) as to, nor accepts liability for, the accuracy or fitness for a particular purpose of the information or advice contained herein. The Publisher wishes to make it clear that any views or opinions expressed in this report by individual authors or contributors are their personal views and opinions and do not necessarily reflect the views/opinions of the Publisher.
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Barnett 2</td>
</tr>
<tr>
<td>Disclaimer 2</td>
</tr>
</tbody>
</table>

| Executive summary 8 |
| Introduction 8 |
| Legislation and regulation 9 |
| Biodegradable packaging – technology, sectors and applications 10 |
| Biodegradable packaging and the packaging industry 11 |
| Future outlook 12 |

| Chapter 1 Introduction 13 |
| Summary 13 |
| What is biodegradable packaging? 14 |
| Sustainability the main driver 16 |
| Biodegradable packaging and composting 16 |
| Increasing costs of hydrocarbons 17 |
| Concerns over the price of biodegradable packaging 19 |
| Lack of recyclability 21 |
| Consumer attitudes to bioplastics 21 |
| Consumer packaging market 22 |
| The biodegradable plastics market 24 |

| Chapter 2 Legislation and regulation 25 |
| Summary 25 |
| Introduction 26 |
| Packaging legislation in the European Union 26 |
| Regulatory overview 27 |
| Before 1994 27 |
| Directive 94/62/EC 27 |
| Directive 2004/12/EC 27 |
| Directive 2005/20/EC 28 |
Current EU regional picture 29
 UK 29
 Belgium 30
 France 30
 Italy 31
 Slovakia 31
 Germany 31

Bioplastics/biodegradable legislation in the EU 32
 Certification and labeling 32
 EU Directives 33
 Lead Markets Initiative 34
 Funding 35

Future outlook 35

Packaging legislation in the United States 36
 US regulatory overview 36
 The FDA 36
 NEPA 37
 EPA 37

US bioplastics/biodegradable legislation 38
 Certification and labeling 39

US non-government organizations 40
 The Bioplastics Recycling Consortium (BRC) 40
 The Biodegradable Products Institute (BPI) 40
 The Sustainable Packaging Coalition (SPC) 41
 Walmart 41

Packaging regulations in Asia-Pacific 41
 China 42
 Japan 43
 Singapore 44
 Thailand 45
 Indonesia 46

Global trends 47

Biodegradable drivers 49

Chapter 3 Technology, sectors, and applications 51

Summary 51

Introduction 52

Technology 53
 Biopolymers 53
 Fermentation 54
 GM plants 55
 Agro-polymers 55
Cellulose biopolymers 56
Starch biopolymers 56
Starch blends 57
Starch composites 58
Starch multi-layers 58
Agro-resources-based polymers 59
Biopolymers from lactic acid 59
Biopolymers from micro-organisms 60
Petroleum-based polyesters 60
New polymer materials 61
Smart materials 61
 Nanocomposites 62
Biodegradable barrier materials 63
Self-regulating, self-monitoring packaging 64
 Regulating the internal packaging environment 64
 Enzyme immobilization systems 64
 Self-healing composites 64
 Sensor technologies 65
 Biosensors 65

Sectors and applications for biodegradable packaging 66
The steady rise of plastics 66
Biodegradables are a vital target for investment 66
Bioplastics led by PLA 67
Oxo-biodegradable plastic – the new alternative 68
Recent commercial applications of biodegradable plastic packaging 70
Bioplastics market overview 71
Paper and board packaging 73
 Biodegradable linings 75
 Nanotechnology 76

Chapter 4 The biodegradability packaging industry 78
Summary 78

Major packaging companies with interests in biodegradable 79
Innovia 79
NatureWorks 80
Cereplast 81
Cardia 82
Novamont 83

Manufacturers moving biodegradables into the mainstream 83
Amcor 83
BASF 84

Biodegradable materials and brand names 85
Nature Flex 85
Ingeo 87
Mater-Bio 88
Nature Plus 89
Ecoflex 89

Retailer and manufacturer initiatives 90
Retailers
 Sainsbury’s 90
 Tesco 90
 Walmart 91
Manufacturers 94
 The Coca-Cola Company 94
 PepsiCo 95
Niche players 97

Chapter 5 Future outlook 99
Summary 99
Introduction 100
Market outlook 101
Outlook for Suppliers 103
 Production 103
 Research and development 105
 Economies of scale 105
 How viable is biodegradable packaging? 105
Who is driving the market? 106
Price drivers 106
Policy drivers 106
Consumer demand 107
Who is paying for the development and growth of biodegradable packaging? 107

Appendix 108
Scope 108
Methodology 108
Glossary/Abbreviations 108
Bibliography/References 109
Table of figures

Figure 1: Share of global bioplastics market by production volume (%) 2009 15
Figure 2: Coca-Cola’s PlantBottle 19
Figure 3: Global consumer packaging market ($bn), 2006–2010 22
Figure 4: Share of consumer packaging market by region (% value), 2009/2010 23
Figure 5: Share of value of consumer packaging market 2010 by material (%) 24
Figure 6: Seedling logo and OK Compost logo 32
Figure 7: Key drivers of the development and use of biodegradable packaging 50
Figure 8: Schematic of competing starch blends 58
Figure 9: SWOT analysis of paper packaging 74
Figure 10: NatureFlex NK film 86
Figure 11: Ingeo Biobottle from Sant’Anna 87
Figure 12: Ecoflex biodegradable film 90
Figure 13: Tesco principles to reduce packaging 92
Figure 14: Share of worldwide capacity of bio-based plastics (%) by region in 2020 101
Figure 15: Global production capacity of compostable bioplastic (metric tons), 2009-2012 102
Figure 16: Major cost barriers for suppliers of biodegradable packaging 103
Figure 17: Which stakeholders are driving the growth in biodegradable plastics? 106

Table of tables

Table 1: PLA uses in packaging industry 14
Table 2: Plastics price comparison 20
Table 3: Regional biodegradable packaging policies in the EU 29
Table 4: Comparison of compostable and oxo-biodegradable plastics 69
Table 5: Major suppliers of starch-based biopolymers 72
Table 6: Leading players in paper and board market 75
Table 7: Leading biodegradable materials used in the packaging industry 85
The Packaging (Essential Requirements) Regulations 2003, as amended by the Packaging (Essential Requirements Amendment) Regulations 2006

These regulations require companies to ensure that their packaging is ‘fit for purpose’ and is the minimum weight and volume needed for safety, hygiene, and consumer acceptability.

Packaging may be reusable (optional) but all packaging, including reusable packaging, must fulfill at least one of the following criteria:

- Packaging recoverable through material recycling.
- Packaging recoverable through energy recovery.
- Packaging recoverable through composting, in particular, “Packaging waste processed for the purpose of composting shall be of such a nature that it should not hinder the separate collection and the composting process or activity into which it is introduced”.
- Biodegradable packaging: in particular, “Biodegradable packaging waste shall be of such a nature that it is capable of undergoing physical, chemical, thermal or biological decomposition such that most of the finished compost ultimately decomposes into carbon dioxide, biomass and water”.

Belgium

The Belgian government primarily approaches the problem of packaging waste with taxation. The government attempted to introduce a carbon-based tax on all packaging materials, but this failed due to opposition from a coalition of environmentalists, industry, and consumers which viewed the plans for a general tax on packaging as a stealth tax that could not be justified on environmental grounds. From July 2007 a tax on selected types of packaging became effective, including EUR 3 per kg (approximately $4.30 per kg) on plastic carrier bags and EUR 2.70 per kg (approximately $3.80 per kg) on plastic films.

France

France is one of the leaders of biodegradable packaging regulation in Europe. A 2005 Law on Agricultural Policy outlined the country’s obligation to promote biodegradable plastics, and in 2007 France submitted a proposal to the European Commission to require plastic used to produce small rubbish bags and cotton buds to contain a minimum of 40% material from vegetable origin (by weight). This proposal came into effect in 2009.
There are four main sources of biopolymer:

- **Biomass**: e.g. agro-polymers from agro-resources including starch and cellulose.
- **Microbial production**: e.g. polyhydroxyalkanoates.
- **Conventional chemical synthesis**, with base molecules derived from agro/renewable resources: e.g. polylactic acid.
- Polymers whose monomers and polymers are obtained conventionally from petrochemicals through chemical synthesis.

Biopolymers can be created using a number of methods, including the creation of a polymer structure from an original natural molecule using a process of chemical polymerization; and the chemical modification of a naturally occurring polymer. Chemical modification, however, can sometimes affect the biodegradability of the end product. As each biopolymer has its own unique set of properties (such as oxygen permeability), a compromise is often necessary between material properties and biodegradability.

There are currently two main production processes for the creation of biopolymers: fermentation and GM plants.

Fermentation

Fermentation is the use of micro-organisms to break down organic substances without the use of oxygen. Polymers created using fermentation usually use genetically engineered micro-organisms specifically designed for the appropriate substance.

There are two main methods of fermentation:

- **Bacterial polyester fermentation**: using bacteria called Ralstonia eutropha. These bacteria use the sugar of feed stocks such as corn to fuel their cellular processes, the by-product of which is a bacterial biopolymer which can then be separated from the bacterial cells.
- **Lactic acid fermentation**: using lactic acid fermented from sugar. In this process, the end-product is lactic acid, therefore an additional step is required to convert the lactic acid to polylactic acid (polymerization).
<table>
<thead>
<tr>
<th>Compostable plastic</th>
<th>Oxo-biodegradable plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be recycled as part of a normal plastic waste stream</td>
<td>Damages recycle stream unless extracted from feedstock</td>
</tr>
<tr>
<td>Can be made from recycled plastic</td>
<td>Cannot be made from recyclate</td>
</tr>
<tr>
<td>Emits CO₂ slowly while degrading and forms biomass inert deep in landfill</td>
<td>Emits CO₂ rapidly while degrading</td>
</tr>
<tr>
<td>Can use same machinery as for conventional plastic</td>
<td>Needs special machinery</td>
</tr>
<tr>
<td>Can be compostable</td>
<td>Degrades only in high-microbial environment</td>
</tr>
<tr>
<td>Four or five times more expensive than conventional plastic</td>
<td>Little or no on-cost</td>
</tr>
<tr>
<td>Same strength as conventional plastic</td>
<td>Weaker than conventional plastic</td>
</tr>
<tr>
<td>Same weight as conventional plastic</td>
<td>Weaker than conventional plastic</td>
</tr>
<tr>
<td>Leak-proof Degrades anywhere on land or sea</td>
<td>Can be incinerated, but lower calorific value</td>
</tr>
<tr>
<td>No PCB’s, organo-chlorines, or "heavy metals"</td>
<td>Production uses fertilizers, pesticides and water</td>
</tr>
<tr>
<td>Can be incinerated with high energy-recovery</td>
<td>Safe for food contact</td>
</tr>
<tr>
<td>Production uses no fertilizers, pesticides or water</td>
<td>Safe for food contact</td>
</tr>
</tbody>
</table>

Source: Business Insights
Market outlook

The global production capacity for bioplastics reached 400,000 tons in 2009, according to a study from the University of Utrecht, and is forecast to reach 3.5m tons by 2020, representing a Compound Annual Growth Rate (CAGR) of 21.8%. Europe currently leads the field in regulation and infrastructure for biodegradable packaging, and accounted for over 50% of world tonnage for bioplastic packaging consumption in 2010.

The US still dominates in terms of production capacity, but even here it is gradually losing its dominance. In 2003 the US accounted for 84% of global bioplastics production, compared to just 15% in Europe. However, by 2007 Europe had almost doubled its capacity to 33%, while the US share fell to 36%, and Asia accounted for 29% - a dramatic increase from just 1% in 2003. According to the European Bioplastics association, by 2020 Europe and the US are likely to each account for around a quarter of production capacity, while Asia, South America, and new players will provide the rest.

![Figure 14: Share of worldwide capacity of bio-based plastics (%) by region in 2020](image-url)

Note: Others = Africa, Middle East & Oceania

Source: European Bioplastics Association